
Bounds on the Complexity of the Longest Common

Subsequence Problem

A V. AHO

Bell Laboratortes, Murray Hdl, New Jersey

D S. HIRSCHBERG AND J D. ULLMAN

Prmceton Umverstty, Prmceton, New Jersey

ABSTRACT The problem of finding a longest common subsequence of two strings is discussed This
problem arises in data processing applications such as comparing two files and in genetic applications such
as studying molecular evolution The ddlqculty of computing a longest common subsequence of two
strings IS examined using the decision tree model of computation, m which vertices represent "equal -
unequal" comparisons It IS shown that unless a bound on the total number of 0istmct symbols is as-
sumed, every solution to the problem can consume an amount of time that is proportional to the product
of the lengths of the two strings A general lower bound as a function of the ratio of alphabet size to
string length is derived The case where comparisons between symbols of the same string are forbidden
is also considered and it is shown that this problem is of linear complexity for a two-symbol alphabet and
quadratic for an alphabet of three or more symbols

KEY WORDS AND PHR~tSES longest common subsequence, algorithm, computational complexity, file
comparison, molecular evolution

CR CATEGORIES 3 12, 3 73, 5 25

1. Introduction

A subsequence of a g iven s t r ing is any s t r ing o b t a i n e d by de l e t ing zero or m o r e s y m -
bols f rom the g iven str ing. A longest common subsequence (L C S) o f two s t r ings is a
s u b s e q u e n c e o f bo th tha t is as long as any o t h e r c o m m o n s u b s e q u e n c e . Fo r e x a m -

ple, " c l e d " and " c u e d " are t he longes t c o m m o n s u b s e q u e n c e s o f " s c h o o l e d " and
" e n c y c l o p e d i a " .

Being able to d e t e r m i n e a longes t c o m m o n s u b s e q u e n c e o f two s t r ings is use-
ful in data p rocess ing and gene t i c applicat ions. In data p rocess ing a longes t c o m m o n

s u b s e q u e n c e is o f t en used to m e a s u r e t he d i f fe rences b e t w e e n two files o f data. For
example , we can c o n s i d e r a file to be a s t r ing in wh ich each l ine o f t he file is t rea ted
as a s ingle s y m b o l A longes t c o m m o n s u b s e q u e n c e o f two files ident i f ies t hose por-
t ions o f the files tha t are identical . A gene t ic appl icat ion arises in the s tudy o f t he
evolu t ion o f long molecu le s such as p ro te ins ; t h e r e a longes t c o m m o n s u b s e q u e n c e

Copyright © 1976, Association for Computing Machinery, Inc General permlsmon to republish, but not
for profit, all or part of this material is granted provided that ACM's copyright notice is given and that
reference is made to this pubhcation, to its date of issue, and to the fact that reprinting prtvdeges were
granted by permission of the Association for Computing Machinery

This research was partially supported by a National Science Foundation Fellowship to D S Hirschberg
and by National Science Foundation Grant GJ-35570 to Princeton University

A preliminary version of this paper was presented at the 15th Annual IEEE Symposium on Switching and
Automata Theory, October 14-16, 1974.

Authors' present addresses A. V Aho, Bell Laboratories, lnc, 600 Mountain Avenue, Murray Hill, NJ
07974, D S Hirschberg, Department of Electrical Engineering, Rice University, Houston, TX 77001, J
D UUman, Department of Electrical Engineering, Prmceton University, Princeton, NJ 08540

Journal of the Assoclation for Cornputmg Machm©ry, Vol 23, No l, January 1976, pp 1-12

2 A V AHO, D S HIRSCHBERG, AND J D ULLMAN

is used to measure the correlation between two such molecules [11, 14].
Using dynamic programming an LCS of two strings .4 and B can be computed

m time proportional to the product of thetr lengths. For special cases an LCS can be
computed in time less than the product. For example, if A and B are length n
strings of digits 1, 2 n, and no position of A matches more than one position of
B, then an LCS of A and B can be computed in O(nioglogn) time by speciahzing
the algorithms in [6, 9, 18] to integers and using van Emde Boas' integer merging
technique [15]. Always being able to compute an LCS of two strings in time
significantly less than the product of their lengths, however, appears very difficult
[31.

For this reason we believe that an attempt at a lower bound is m order. To
derive lower bounds a precise model for a class of algorithms is necessary. The
model we choose ~s that of a decision tree [11 in which all decisions are whether or
not two positions have or do not have the same symbol. Th~s model fits various al-
gorithms for the LCS problem which have appeared in the literature [7, 14, 16]. It
has also been used to study the related string-to-string correction problem [17], the
substrmg matching problem [5], and various problems on sets [13]. The model does
not, however, fit the O(n21og Iogn/logn) algorithm of Paterson [12] nor the special
case algorithms of [8, 9].

For the remainder of this paper .4 and B denote two strings of length n whose
LCS we wish to compute 1 Throughout , s denotes the total number of distinct sym-
bols that can appear in .4 and B (the alphabet size). T(n, s) ~s the min imum
number of comparisons under the decision tree model needed to find an LCS of A
and B in the worst case

We shall derive both upper and lower bounds on T(n, s). The use of lower
bounds as clear They say that there are no algorithms of lower time complexity
whlc, h can be modeled by a decision tree w~th "equal-unequal" comparisons. We
are thus told something about the way algorithms for the LCS problem must
behave, if they exist at all.

The need for upper bounds on T(n, s) is less obvious. We shall use them to
demonstrate that no stronger bounds on T(n, s) can be shown. In principle, an
upper bound on T(n, s) is an algorithm for the LCS problem The algorithm, how-
ever, may involve essentmlly different decision trees for each value of n and s.
Thus, it ~s possible that no uniform algorithm taking strings o f arbitrary lengths and
finding their LCS can be obtained from a sequence of deciston trees for all n and s,
and such appears to be the case here.

Our principal results are the following:
(1) T(n, 2) = 2n--1 for n >t 1.
(2) For all n >/ 1'

s s
(i) ~ (n + ~) ~ r(n,s) ~< min[n 2, (s - 1) (2 n -)1, for 2 . ~ s ~ n.

(ii) 3ns/4 <~ T(n, s) <~ n 2, for n <, s <~ 4n]3.
(ii0 T(n,s) = n 2 , f o r s > / 4n/3.

These upper and lower bounds on T(n, s) are shown in Figure 1.
(3) The special case where all comparisons are between symbols of different

strings is shown to require 2 n - 1 comparisons if s = 2 and n 2 comparisons if s >I 3.

t We can, m a straightforward manner, generahze the results of this paper to the case where the strings
are of unequal length

The Longest Common Subsequence Problem

T(n, s)

n 2

.~.n 2
4

 .2.7 <2,-7 > ,

n2

0 L

1 586n n 4n/3 2n

S -"*

FIG 1. Upper and lower bounds on T(n, s)

2. Decision Trees

This section makes precise the decision tree model of computat ion Intumvely, each
path starting at the root of a decision tree represents a sequence of comparisons
made between various posmons in the strings A and B. These comparisons give us
all the information we current ly know about A and B. The information is in the
form of which positions in A and B must contain identical or dist inct symbols.

More formally, we define a dectston tree wnh "equal-unequal" comparisons for the
LCS problem as a rooted binary tree in which each interior vertex is labeled with a
pair of integers and each leaf is labeled by two lists of posit ions from A and B,
respectively. A pair of integers p.q at an interior vertex represents a comparison
between the symbols m positrons p and q of the two strings. (p and q can be post-
tlons in the same string.) Each list of positrons at a leaf represents an LCS of A and
B

Since the only information we get about A and B comes from "equal-unequal"
comparisons among symbols of the two strings, we are always dealing with relative
values of symbols m various positions m the strings. Consequently, it is conven ien t
to define an (n, s)-asstgnment (or asstgnment when n and s are clear) as a setting of
values from some s-symbol alphabet to the positions of A and B. Intuit ively, an as-
s ignment is a representat ive of an equivalence class of parrs of input strings. Given
a path P = v I , v 2 v m from the root to some vertex (not necessarily a leaf) m a
decision tree, we say (n, s) -ass ignment C is valid for P if for each pair of posit ions
Pl:ql at vertex vl, 1 ~< t < m, v,+ 1 is the left son of v~ if the symbols m positions pl
and qt are equal according to C, and v~+ 1 is the right son of v, otherwise. Thus an
a s s i g n m e n t C is valid for a path if C represents a class of pairs of input strings
whose symbols are consis tent with the outcomes of the comparisons made along the

4 A. V AHO, D. S H I R S C H B E R G , A N D J. D U L L M A N

path.
We say a decls~on tree D solves the (n, s)-LCSproblem (or just the LCSproblem

if n and s are clear) if for every leaf w of D and for every (n, s) -ass ignment C valid
~for 1 he path from the root of D to w, the two lists of posit ions found at w are an LCS
in the first and second strings, respectively.

The complexity of a decision tree is the length o f a longest path in that tree.
We define T(n, s) to be the m i n i m u m complexi ty over all decision trees that solve
the (n, s) -LCS problem

A free decision tree is one which makes no comparisons whose outcomes are
already known (For example , if the symbols at posit ions p and q and at posit ions q
and r have been compared and found equal, then, by transit ivity, the symbols at po-
sit ions p and r are also known to be equal.) We can, without loss of generali ty, as-
sume that all decision trees being considered are free. This assumpt ion allows us to
consider decision trees in which there are no unnecessary comparisons.

Example 1. To fix the model more closely, let us consider the case where
n = s - - 2 . (That is, we are to find an LCS of two strings each of length 2, and
each over the same two symbol alphabet.) For convenience we let A -- a I a 2 and
B -- b 1 b 2. In Figure 2 we see a decision tree that solves the (2, 2)-LCS problem. It
has complexi ty 3, which we shall see is the m i n i m u m for this problem. Thus
T (2 . 2) = 3 . []

no

yes f ~ no y e s f '~, no

a2 = b 2

ao yes no

FIG 2. Decision tree solving the (2, 2)-LCS problem

3. Upper Bounds

There are two trivial strategies that can be used to construct decision trees for a
fixod n and s. The first strategy is to compare each symbol of one string with each
symbol of the other. It yields the following theorem.

THEOREM 1. For all s and n, T(n, s) ~ n 2.
For s >/ 4n/3 this result is the best possible under our model of computat ion.

The second strategy is to use comparisons to de te rmine which port ions of the two
strings hold identical symbols. We cannot, of course, de t e rmine the actual symbol at

The Longest Common Subsequence Problem 5

a position with "equal - unequal" comparisons. If we know the partition of the two
strings into equivalent positions, however, then we can surely select an LCS for the
string without making any additional "equal-unequal" comparisons. We are thus
motivated to make the following definitions.

The (m, s)-string identification problem is, given a string of length m, to deter-
mine which positions hold the same symbols, assuming all symbols are chosen from
an s-symbol alphabet A decision tree with "equal-unequal" comparisons for the strmg
Mentification problem is defined as for the LCS problem, except the leaves are labeled
with partitions of the integers 1, 2 m into at most s equivalence classes.

The notions of assignment and validity of an assignment are defined as for the
LCS problem. A decision tree solves the (m, s)-string identification problem if for
each leaf w, all valid assignments for the path from the root to w have equal symbols
at a pair of positions if and only if those positions are in the same block of the parti-
tion at w. Finally, we can define l(m, s) to be the minimum over all decision trees
D solving the (m, s)-string identification problem of the length of the longest path
in D.

LEMMA 1. T(n, s) ~< l(2n, s).
PROOF Concatenate the two strings of length n into one string of length 2n,

identify the equivalent positions, and determine from them an LCS for the two
strings of length n. Note that no algorithm to solve the LCS problem for general n
and s is implied by this strategy, but using it we can, for fixed n and s, build a deci-
sion tree for the (n, s)-LCS problem given a decision tree for the (2n, s)-strmg
identification problem. []

LEMMA 2. l (m,s) ~< (s - - l) (m - - +) fora l l l ~< s ~< m.

PROOF Visit in turn each position of the given string, comparing the symbol
at that position with the representatives for each of the equivalence classes found so
far. If the symbol matches the representative of some class, it is added to that class.
If no match is found, the symbol becomes the representative of a new class. Hence,
for 1 ~< 1 ~< s, at most t - 1 comparisons are needed for the t th position. For i > s,
s - 1 comparisons suffice, since the sth comparison will always succeed if all others
have failed. The total number of comparisons is thus

s - 1
S]~i + (m - - s) (s - - l) = (s--1)(m---~-) . I~

From Lemmas 1 and 2 we conclude:

THEOREM 2. For all s and n, T(n, s) ~< (s - l) (2 n - - - ~ -) .

Note that Theorem 1 is stronger than Theorem 2 when ~ >t 2 - -q~ ~ .586
n

and Theorem 2 is stronger otherwise.

4. Strmg Identification

Since the string identification problem was used in the proof of Theorem 2 to bound
from above the complexity of the LCS problem, let us digress a moment and show
that the upper bound on l(m, s) of Lemma 2 is its exact value.

To prove this result we relate the string identification problem to graph color-
ing. Given a path P in a decision tree for the LCS or string identification problem
we can associate with P an undirected graph Gp as follows. Let R e relate two posi-
tions if they have been compared and found equal along path P. Let ~p be the
least equivalence relation containing Rp. That is, p ~ p q if and only if p = q or the
fact that p and q have the same symbol is implied by the outcomes along path P
Then the vertices of the graph Gp are the equivalence classes of ~ p , and there is an

6 A V. AHO, D. S. HIRSCHBERG, AND J. D. ULLMAN

edge between two vertices if members of their represented classes have been com-
pared and found unequal along path P.

An undirected graph is k-colorable if there is a mapping (a k-coloring) from its
vertices to a set of numbers (colors) such that no two adjacent vertices are mapped
to the same color. A graph G is umquely k-colorable if all k-colorings of G are the
same up to a renaming of colors.

Example 2. Figure 3 shows a path P whtch is part of a hypothetical decision
tree for the (6,2)-string identification problem. We use a 1, a 2 a 6 for the posi-
tions of the string. Rp is given by:

a I Rp a 2
a 2 Rp a 3
a 4 Rp a 5

~ e has equivalence classes {at ,a2,a3 }, {a4,as}, and {a6}.
a 5 ~- a6, the graph Gp is as shown m Figure 4.

Since a 3 ;~ a 4 and

yes

ilO

n o

FIG 3. Path P FIG 4. Graph Gp

We note that all 2-colorings for Gp must color {a 4,a 5 } and the other two ver-
tices with the other color. Thus the 2-coloring of Gp is unique up to renaming of
color's and explains one conclusion at the leaf of Figure 3 that a 6 has the same value
as at , a2, and a 3 although no equality among them is implied by ~ p . []

We may easily see that the notions of graph colorings and valid assignments
for a path are related. It is therefore a restatement o f definitions to prove:

LEMMA 3. A decision tree solves the (m, s)-strmg identification problem oC and only
t f for each path P, Gp ts umquely s-colorable.

The Longest Common Subsequence Problem 7

The following two lemmas are from [2].

LEMMA 4. In a k-colormg of a umquely k-colorable graph, the subgraph mduced by
the union of any two color classes ts connected.

LEMMA 5. Every uniquely k-colorable graph with p vertices has at least

(k -1) (p - ~) edges.

PROOF Let C~k be the number of vertices of color t m a unique k-coloring of

the graph. Then ~ c ~ ----p. For each t < j t h e r e are at least c~ + c / - 1 edges

connect ing vertices of these two colors by Lemma 4. No edge surely connects two
vertices of the same color, so to each edge we may assign a unique pair of states i
and j such that the edge is counted among the c~ + cl -- 1 edges connect ing the
vertices of colors t and j. Thus the number of edges is at least ~ c~ + c / - 1.

J < j

Now ~ 1 = k (k - 1)/2. For each m the term c m appears exactly k - 1 t imes
i < j

among all the expressions c t + c / for t < j. Thus

k

~ c, + c I ---- (k - -1) ~ c m = (k - 1) p .
t < l m = l

+ c~ - 1 ---- (k - - 1) p - k (k - - l) / 2 = (k - 1) (p - % ~ -) . [] Hence, Zc,
t < l

THEOREM 3. l(m, s) = (s - - 1) (m - - ~ -) f o r a / l l ~< s ~< m.

PROOF From Lemma 2 we have l(m, s) ~< (s - I) (m - - ~ -) . Suppose we have

a decision tree D for the string identification problem and consider that path P m D
for which all outcomes are "no t equal." The graph Gp has m vertices and must be
uniquely s-colorable by Lemma 3. Thus by Lemma 5 Gp has at least

(s - 1) (m---~-) edges, so P must be of at least that length. We have thus bounded

from below the complexi ty of an arbitrary decision tree D for the string
S

identification problem. Hence l(m, s) >~ (s - - l) (m - y) . []

5. Lower Bounds for the LCS Problem

We cannot show Theorems 1 and 2 to be exact bounds on T(n, s) , principally be-
cause we do not have an analog of Lemma 3 relating vahd ass ignments to s-
colorings. We can show the lower bound of Figure 2, and do so with a series of
lemmas. The general strategy behind the proof is to exhibi t a path P , in any deci-
sion tree such that e i ther lots of comparisons between positions of the two strings
are made, or a lot of comparisons between positions of the same str ing are made to
group positions into large equivalence classes under -~e , .

A fundamental assignment is an ass ignment of values to the posit ions of strings
A and B such that there are at most s/2 different values per string and there are no
values common to strings .4 and B. Thus, a fundamenta l ass ignment has an LCS of
length 0.

A side comparison is a comparison between positions of the same string.
A cross comparison is a comparison between positions of different strings.
A vahd assignment (for a particular sequence of comparisons) is an ass ignment

of values to posit ions that is consis tent with the results of all comparisons
We now define an "oracle" or decision rule by which a path is dis t inguished m

each decision tree for the LCS problem.

8 A V AHO, D. S. HIRSCHBERG, AND J D ULLMAN

Dectsion Rule (*): Return "unequal" whenever there exists a valid fundamen-
tal assignment consistent with that outcome. Otherwise, return "equal"

Let us fix on an arbitrary decision tree D for the (n, s)-LCS problem. Let P,
be the path from the root of D to a leaf such that every comparison has the outcome

, (t) >, dictated by rule () . Let P~ , i ~ 0, be the prefix of length i of P , , and let C, (') be
a (not necessarily unique) fundamental assignment presumed valid for P,(') by rule
(*).

Define a group of positions (with respect to P,(')) to be an equivalence class
under .~p,~,>. Note that a group may have size 1, and that all groups are contained

within one string or the other, since by rule (*), all cross comparisons have outcome
"unequal." If all members of a group have each been involved in at least s/2 side
comparisons, call the group a clan.

Let us call the two strings being compared A and B. Let gA and c A be the
number of groups and clans, respectively, in A with respect to path P,. Since every
clan is a group, gA >/ cA" Let gB and c B be defined analogously for string B.

It is easy to get a lower bound on the number of cross comparisons in P,.
LEMMA 6. P, makes at least gA gB cross comparisons.
PROOF If not, then there are two groups, G 1 in A and G 2 in B, such that none

of their positions have been compared. We know there is a valid fundamental as-
signment C, for P, , in which the LCS is necessarily of length 0. We can find
another assignment C valid for P, by changing the value of the G 1 positions in C,
to be equal to that of the G 2 positions.

To see that C is valid for P, , consider any comparison Pl :P2 on that path. If
neither Pl nor P2 is in Gi, their values are the same in Cas in C,. Thus the values
assigned to positions Pl and P2 by C agree with the outcome of comparison Pl :P2
along P,. If both Pl and P2 are in G1, then they must have the same value in C,,
so the outcome of PI'P2 was "equal". Since Pl and P2 were defined to have the
same value in C, the outcome "equal" for comparison Pl 'P2 is consistent with C.

If only one of Pl and P2, say Pl, is in G l , then the outcome of Pl :P2 must be
"unequal," and Pl and P2 have different values in C,. They must have different
values in C as well, unless P2 is in G 2. But by hypothesis, no member of G l was
compared with a member of G 2, so we can rule out this possibility. We conclude
that C is valid for P,.

Since C has an LCS of length equal to the smaller of G 1 and G 2, which is not
zero, we conclude that the decision tree D of which P, was a path does not solve
the LCS problem. []

We now develop a lower bound on side comparisons by showing that in order
for there to be any "equal" side comparisons, there must be many side comparisons
with outcome "unequal." If there are few "equal" side comparisons, then Lemma 6
is sufficient to show P, to be long. If there are many "equal" side comparisons,
then we can use the number of "unequal" side comparisons to bound from below
the length of P,.

LEMMA 7. Every group of size greater than one is a clan (i.e. all its members are
involved m at least s/2 stde compartsons).

PROOF Suppose not. Then there must be some side comparison Pl :P2 on P,
with outcome "equal" along P, , such that Pl was previously in a group by itself and

s
had been involved in at most -~- -- 2 side comparisons, all of them with outcome

"unequal." Let comparison Pl :P2 be the i th in P, and consider a fundamental as-
s

signment C, (I - l) Since Pl has been compared with at most -~- -- 2 other positions

in its string, there is some value reserved for positions in that string possessed in
C,(, -1) by none of the positions with which Pl has been compared in P,(').

The Longest Common Subsequence Problem

Therefore, we can construct a valid fundamental assignment C from C, (~-1)
by g~wng Pl that value. By an argument s~mdar to that of Lemma 6, we can argue
that C is valid for the path consisting of P , (' - I) followed by the "unequal" branch
after comparison Pl :P2 Thus P, should not follow the "equal" branch at that com-
parison, as supposed. []

LEMMA 8. I f there are any "equal" stde comparisons in string A along P , , then
there are at least s/2 clans m strmg A, and stmdarly for B.

PROOF Suppose the t th comparison along P, , say Pl :P2, has the outcome
, , ~ , . S

equal. Suppose m contrad~cuon that after this comparison there are at most -~--1

clans in A. But then we can construct a fundamental assignment C valid for p , t , - t)
and the "unequal" outcome for Pl :P2 as follows. C assigns to members of string B
the same values assigned to them under C, (' -1) . After the Pl 'P2 comparison, Pl

s
a n d P2 are together in a clan according to Lemma 7. Consider the other -~---2 clans

in A after this comparison. To each of these clans we assign a distinct value. This
leaves free at least two distinct values which we can assign to Pl and P2 before the
comparison. Nonclans are assigned values dtstmct from that of any position with
which they have been compared. []

LEMMA 9. I f g A < n. then c A >i s/2, and stmtlarly for B.
PROOF If gA < n, then there has been a side comparison involving positions

of A with outcome "equal." The result then follows from Lemma 8. []
s s 2

LEMMA 10. I f gA < n, then there have been at least (n - gA)'~- + T side

comparisons along P , , and stmtlarly for B.
PROOF Let h A be the number of positions in A that are not m clans By

Lemma 7, all such positions are in single groups so h A = g A --CA Then the
number of positions in clans is n - h A = n - gh + CA" Each position in a clan is
involved in at least s/2 side comparisons and each side comparison involves at most
two members of clans. Thus the number of side comparisons within A in P, is at

~ s SCA
least () () (n -- gA + CA) = (n -- gA)-~- + -~--" By Lemma 9, c A >l s/2, so

the present result follows. []
THEOREM 4.

s s
T (n , s) >~ y (n + y) . fors~< n,

T(n, s) i> 3ns/4. for n ~< s ~< 4n/3, and

T (n , s) >I n 2, for4n/3 ~< s~< 2n.

PROOF We consider the length of P, , obtaining lower bounds in the cases
when zero, one, or two of gh and gB are less than n. We then cimm that T(n, s)
must exceed the smallest of these three. The three inequahues m the statement of
the theorem reflect the analysis regarding which one of these cases yields the smal-
lest lower bound on the length of P, for varying values of s.

CaseO. gA = g B =n" The length of P, l s a t l eas tn 2 b y L e m m a 6 .
Case 1. Let gA < n and gB = n. Then there are at least ng A cross compari-

_ 2
S

+ -~- side comparisons by Lemma 10. sons by Lemma6 and at least (n - -gA)-~- s 2

The length of P, is at least (n - s gA)'~- + -~- +ngA" Since gA >I CA is obvious,
s s 2

we havegA >1s/2 b y L e m m a 9 . LetgA = s / 2 + t. Then (n -- gA)-~- + "~-+ ngA

= 3ns/4 + t(n -- @). Since we assume s ~< 2n, 3ns/4 ts a lower bound on the
o¢

10 A V AHO, D S. HIRSCHBERG, AND J D. ULLMAN

length of P . in this case.
Case 2. gA < h a n d gn < n. By Lemmas 6 a n d 10, the length of P , is at

least

s s 2
(2n - -gA -- gB)--~ +

Since we know gA and gB are at least s/2, we have

+ gAgB"

1 1 1 1 1
gAgB = -~gAgB + --fgAgB >~ "~gA (s/2) + -~gB (s/2) = "~s(gA + gB)"

s s 2 ns s 2 s
. . . . -~-(n + We see that Thus (2n gA gB)'~" + ~ + gAgB >1 "~- + 4 "2-)"

s (n + s) Is a lower bound on the length of P . in this case. T T
We may conclude that P . is at least as long as the smallest of n 2, 3ns/4 and

T)
S

- (n -F The theorem then follows by comparing these three funct ions as s

ranges from 1 to 2n. []
It should be noted that the lower bound of Theorem 4 applies even if we only

wish to find the length of an LCS.
If we compare two strings of lengths n I and n 2, respectively, where n 1 > n 2,

then we can obtain the following lower bounds on T(n I , n 2, s), the number of com-
parisons needed to de te rmine a longest common subsequence (or even its length):

S
T(n I , n 2, s) >1 -T(n l + n 2 + s) for 0 ~< s ~< n 2,

S
T(n 1 ,n 2 , s) >1-~-(2n 2 + n 1) f o r n 2 ~< s<~ - -

4n 1 n 2

2n 2 + nl , and

T(n I , n 2, s) >1 n I n 2 for - -
4n 1 n 2

2n 2 + n I
s ~ n 1 + n 2 .

For the special case s = 2, we can obtain exact upper and lower bounds on
the LCS problem

THEOREM 5. T(n, 2) = 2 n - - l .
PROOF By Theorem 2 we need only show that T(n, 2) >i 2 n - 1 . Given any

decision tree for the (n,2)-LCS problem, consider the path P along which all cross
comparisons have outcome "unequa l" and all side comparisons have outcome
"equal ." Suppose Gp has m vertices. Then there are exactly 2 n - - m side comparisons
in P We can find one ass tgnment C 1 vahd for P, in which all posit ions in one
string are given one value, say 0, and all posit ions in the o ther have the o ther value,
say 1. The LCS in C 1 is clearly of length 0. I f Gp is not connected, then we could
reverse the values defined by C 1 in one connected componen t to obtain vahd as-
s ignment C 2 with LCS of length greater than 0. Thus Gp is connected, so there are
at least m - 1 cross comparisons in P, for a total o f 2 n - - m + (m - - 1) = 2n - -1 com-
parisons. []

6 Algorithms That Use Only Cross Comparisons

Various algori thms such as those of [7, 15] rely on cross comparisons only. It turns
out that it is easy to get exact bounds on algori thms of this type, and the bounds are
significantly higher for many values of s than for the unrestr ic ted case.

The Longest Common Subsequence Problem 11

THEOREM 6. For s ---- 2, 2 n - 1 cross comparisons and no stde compartsons are
sufficient to solve the LCS problem, and they are necessary even to determine the length o f
the LCS i f side comparisons are forbidden.

PROOF Necessity follows from Theorem 5. For sufficiency, we use an algo-
rithm simdar to that of Lemma 2. Compare the first position of each string with all
positions of the other string, a total of 2 n - 1 comparisons. Then the positions Pl
and P2 in the same string have the same value if and only if they had the same out-
come when compared with the first symbol of the other string. (Note that s = 2 ~s
essential here.)

If Pl and P2 are in different strings, let a 1 and b I be the first positions of the
strings containing Pl and P2, respectively. Then positions Pl and P2 hold the same
value if and only if an odd number of the outcomes of the following three compari-
sons are "equal": (1) Pl : bl, (2) P2 :al , (3) a 1 :b I. (Again s = 2 is essential) []

THEOREM 7. For s >1 3, n 2 cross comparisons are suffictent for the LCS problem
and necessary even to find the length o f an LCS i f side comparisons are prohibited.

PROOF Sufficiency ~s obwous Consider the path P i n a decision tree D, which
makes cross comparisons only, such that all outcomes are "unequal." If posmons Pl
in string A and P2 m string B are not compared along P, then we may find two as-
signments C 1 and C 2 valid for P as follows. C 1 maps all positions in A to 0 and all
positions in B to 1. It clearly has an empty LCS. C 2 maps all positions in A except
Pl tO 0 and all positions in B except P2 to 1. Pl and P2 are given value 2. Clearly
the LCS of C 2 has length 1, and D does not solve the LCS problem. We conclude
that all n 2 possible cross comparisons are present m P, so the complexity of D is at
least n 2. []

7. Conclustons

We have demonstrated that any algorithm using "equal-unequal" comparisons for
the LCS problem must, in the worst case, either be quadratic or must assume a fixed
alphabet size. Even for a fixed alphabet of size greater than two, side comparisons
must play an essential part if the algorithm is to run in less than quadratic time.
There are, of course, many opportumties to use techniques that cannot be modeled
by our decision trees. Indexing into arrays, as in [12], is one; sorting and hashing
are other ~deas which might be useful in constructing less than quadratic algorithms.

An obvious next step ~s to investigate the expected time complexity of the
LCS problem. The primary difficulty here is defining a meaningful probabihty distri-
bution on pairs of input strings. Chvatal and Sankoff [4] have computed bounds on
the expected length of a longest common subsequence of two random sequences of
the same length. However, m some applications random sequences may not be en-
countered. For example, m data processing applications where two files are being
compared ~t is not reasonable to treat the two files as random pairs of strings.

The straightforward dynamic programming algorithm for the LCS problem has
the disadvantage that it takes the same quadratic amount of time on all inputs. In
practice we would prefer an algorithm which is more efficient on typical inputs and
which may be less efficient on infrequent inputs. For example, Hunt and
Szymanski's algorithm [9], which is based on an approach suggested by H. S. Stone,
has the desirable property that it can be easdy implemented to work in O(n logn)
time on many inputs which occur in data processing applications, although ~ts worst
case time complexity is O(n 2 log n). More investigation of algorithms of this nature
seems profitable.

12 A. V A H O , D S H I R S C H B E R G , A N D J D U L L M A N

ACKNOWLEDGMENTS The authors would like to thank Shen Lin and Doug Mcllroy
for their helpful comments. This paper was typeset using EQN on UNIX [10]. The
cheerful assistance of Mike Lesk in the final preparation of this paper was smcerely
appreciated.

REFERENCES

1 AHO, A V, HOPCROF'r, J E, AND ULLMAN, J D The Design and Analysts oJ Computer Algorlthrns.
Addison-Wesley, Reading, Mass, 1974

2 CARTWRIGHT, D, AND HARARY, F On colorings of signed graphs Elemente der Mathemattk 23
(1968), 85-89

3 CHVATAL, V, KLARNER, D A, AND KNUTH, D E Selected combmatonal research problems
STAN-CS-72-292, Stanford U , Stanford, Cahf, 1972, p 26

4 CHVATAL, V, AND SANKOFF, D Longest common subsequences of two random sequences STAN-
CS-75-477, Stanford U , Stanford, Cahf, Jan 1975

5 FISCHER, M J , AND PATERSON, M S Strmg matching and other products MAC Technical
Memorandum 41, M 1 T , Cambridge, Mass, 1974

6 FREDMAN, M L On computing the length of longest mcreasmg subsequences Discrete Mathemat-
ics 11, 1 (January 1975) 29-36

7 HIRSCHBERG, D S A hnear space algorithm for computmg maximal common subsequences Comm
4CM 18, 6 (June 1975) 341-343

8 HIRSCHBERG, D S On finding maximal common subsequences TR-156, Computer Sciences La-
boratory, Princeton U , Prmceton, N J , 1974

9 HUNT. J W, AND SZYMANSKI. T G A fast algorithm for computing longest common subsequences
Unpublished memorandum, Princeton University, September 1975

10 KERNIGHAN, B W, AND CHERRY, L L A system for typesetting mathematics Comm ACM 18, 3
(March 1975), 151-157

11 NEEDLEMAN, S B, AND WUNSCH, C D A general method applicable to the search for similarities m
the amino acid sequence of two proteins J Mol Btol 48 (1970), 443-453

12 PATERSON, M S Unpublished manuscript University of Warwick, England, 1974
13 REINGOLD, E M On the optimality of some set algorithms J ACM 19, 4 (October 1972), 649-659
14 SANKOFF, D Matching sequences under deletion/insertion constraints Proc. Nat. Acad Sct. USA 69,

1 (Jan, 1972), 4-6
15 VAN EMDE BOAS, P Preserving order m a forest in less than logarithmic time Sixteenth Annual

IEEE Symposium on Foundations o! Computer Science, October 1975
16 WAGNER, R A , AND FISCHER, M J The strmg-to-strmg correction problem J ACM 21, 1 (Jan,

1974), 168-173
17 ~.VONG, C K , AND CHANDRA, A K Bounds for the string editing problem IBM Research Center,

Yorktown Heights, New York, 1974
18 YAO, A C, AND YAO, F F On computing the rank function for a set of vectors UIUCDCS-R-75-

699, Dept of Computer Science, U of Illinois, Urbana, I11, Feb, 1975

RECEIVED DECEMBER 1974. REVISED MAY 1975

Journal of the Association for Computmg Machmery. Vol 23, No 1, January 1976

