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ABSTRACT The problem of finding a longest common subsequence of two strings is discussed This 
problem arises in data processing applications such as comparing two files and in genetic applications such 
as studying molecular evolution The ddlqculty of computing a longest common subsequence of two 
strings IS examined using the decision tree model of computation, m which vertices represent "equal - 
unequal" comparisons It IS shown that unless a bound on the total number of 0istmct symbols is as- 
sumed, every solution to the problem can consume an amount of time that is proportional to the product 
of the lengths of the two strings A general lower bound as a function of the ratio of alphabet size to 
string length is derived The case where comparisons between symbols of the same string are forbidden 
is also considered and it is shown that this problem is of linear complexity for a two-symbol alphabet and 
quadratic for an alphabet of three or more symbols 
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1. Introduction 

A subsequence of  a g iven  s t r ing  is any s t r ing  o b t a i n e d  by de l e t ing  zero  or m o r e  s y m -  
bols f rom the  g iven  str ing.  A longest common subsequence ( L C S ) o f  two s t r ings  is a 
s u b s e q u e n c e  o f  bo th  tha t  is as long as any o t h e r  c o m m o n  s u b s e q u e n c e .  Fo r  e x a m -  

ple, " c l e d "  and  " c u e d "  are t he  longes t  c o m m o n  s u b s e q u e n c e s  o f  " s c h o o l e d "  and  
" e n c y c l o p e d i a " .  

Being able to d e t e r m i n e  a longes t  c o m m o n  s u b s e q u e n c e  o f  two s t r ings  is use-  
ful in data p rocess ing  and  gene t i c  applicat ions.  In data p rocess ing  a longes t  c o m m o n  

s u b s e q u e n c e  is o f t en  used  to m e a s u r e  t he  d i f fe rences  b e t w e e n  two files o f  data. For  
example ,  we can c o n s i d e r  a file to be  a s t r ing  in wh ich  each  l ine  o f  t he  file is t rea ted  
as a s ingle  s y m b o l  A longes t  c o m m o n  s u b s e q u e n c e  o f  two files ident i f ies  t hose  por-  
t ions  o f  the  files tha t  are identical .  A gene t ic  appl icat ion arises in the  s tudy  o f  t he  
evolu t ion  o f  long molecu le s  such  as p ro te ins ;  t h e r e  a longes t  c o m m o n  s u b s e q u e n c e  
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is used to measure the correlation between two such molecules [11, 14]. 
Using dynamic programming an LCS of  two strings .4 and B can be computed 

m time proportional to the product of  thetr lengths. For special cases an LCS can be 
computed in time less than the product. For example, if A and B are length n 
strings of  digits 1, 2 . . . . .  n, and no position of  A matches more than one position of  
B, then an LCS of A and B can be computed in O(nioglogn) time by speciahzing 
the algorithms in [6, 9, 18] to integers and using van Emde Boas' integer merging 
technique [15]. Always being able to compute an LCS of  two strings in time 
significantly less than the product of  their lengths, however, appears very difficult 
[31. 

For this reason we believe that an attempt at a lower bound is m order. To 
derive lower bounds a precise model for a class of algorithms is necessary. The 
model we choose ~s that of  a decision tree [11 in which all decisions are whether or 
not two positions have or do not have the same symbol. Th~s model fits various al- 
gorithms for the LCS problem which have appeared in the literature [7, 14, 16]. It 
has also been used to study the related string-to-string correction problem [17], the 
substrmg matching problem [5], and various problems on sets [13]. The model does 
not, however, fit the O(n21og Iogn/logn) algorithm of  Paterson [12] nor the special 
case algorithms of  [8, 9]. 

For the remainder of  this paper .4 and B denote two strings of  length n whose 
LCS we wish to compute  1 Throughout ,  s denotes the total number  of  distinct sym- 
bols that can appear in .4 and B (the alphabet size). T(n, s) ~s the min imum 
number  of  comparisons under the decision tree model needed to find an LCS of  A 
and B in the worst case 

We shall derive both upper and lower bounds on T(n, s). The use of  lower 
bounds as clear They say that there are no algorithms of  lower time complexity 
whlc, h can be modeled by a decision tree w~th "equal-unequal" comparisons. We 
are thus told something about the way algorithms for the LCS problem must 
behave, if they exist at all. 

The need for upper bounds on T(n, s) is less obvious. We shall use them to 
demonstrate that no stronger bounds on T(n, s) can be shown. In principle, an 
upper bound on T(n, s) is an algorithm for the LCS problem The algorithm, how- 
ever, may involve essentmlly different decision trees for each value of  n and s. 
Thus, it ~s possible that no uniform algorithm taking strings o f  arbitrary lengths and 
finding their LCS can be obtained from a sequence of  deciston trees for all n and s, 
and such appears to be the case here. 

Our principal results are the following: 
(1) T(n, 2) = 2n--1  for n >t 1. 
(2) For all n >/ 1' 

s s 
(i) ~ ( n + ~ )  ~ r(n,s) ~< min[n  2, ( s - 1 ) ( 2 n -  )1, for 2 . ~ s ~  n. 

(ii) 3ns/4 <~ T(n, s) <~ n 2, for n <, s <~ 4n]3. 
(ii0 T(n,s) = n  2 , f o r s > /  4n/3. 

These upper and lower bounds on T(n, s) are shown in Figure 1. 
(3) The special case where all comparisons are between symbols of  different 

strings is shown to require 2 n - 1  comparisons if s = 2 and n 2 comparisons if s >I 3. 

t We can, m a straightforward manner, generahze the results of this paper to the case where the strings 
are of unequal length 
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FIG 1. Upper and lower bounds on T(n, s) 

2. Decision Trees 

This section makes precise the decision tree model of  computat ion Intumvely,  each 
path starting at the root of  a decision tree represents  a sequence of  comparisons 
made between various posmons  in the strings A and B. These  comparisons give us 
all the information we current ly  know about A and B. The  information is in the 
form of  which positions in A and B must  contain identical or dist inct  symbols.  

More formally, we define a dectston tree wnh "equal-unequal" comparisons for the 
LCS problem as a rooted binary tree in which each interior vertex is labeled with a 
pair of  integers and each leaf is labeled by two lists of  posit ions from A and B, 
respectively. A pair of  integers p.q at an interior vertex represents  a comparison 
between the symbols  m positrons p and q of  the two strings. (p and q can be post- 
tlons in the same string.) Each list of  positrons at a leaf represents  an LCS of  A and 
B 

Since the only information we get about A and B comes from "equal-unequal"  
comparisons among symbols  of  the two strings, we are always dealing with relative 
values of  symbols  m various positions m the strings. Consequently,  it is conven ien t  
to define an (n, s)-asstgnment (or asstgnment when n and s are clear) as a setting of  
values from some s-symbol  alphabet  to the positions of  A and B. Intuit ively,  an as- 
s ignment  is a representat ive  of  an equivalence class of  parrs of  input  strings. Given  
a path P = v I , v 2 . . . . .  v m from the root to some vertex (not necessarily a leaf) m a 
decision tree, we say (n, s ) -ass ignment  C is valid for P if for each pair of  posit ions 
Pl:ql at vertex vl, 1 ~< t < m, v,+ 1 is the left son of  v~ if the symbols  m positions pl 
and qt are equal according to C, and v~+ 1 is the right son of  v, otherwise.  Thus an 
a s s i g n m e n t  C is valid for a path if C represents  a class of  pairs of  input  strings 
whose symbols  are consis tent  with the outcomes of  the comparisons made along the 
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path. 
We say a decls~on tree D solves the (n, s)-LCSproblem (or just  the LCSproblem 

if  n and s are clear) if for every leaf w of  D and for every (n, s ) -ass ignment  C valid 
~for 1 he path from the root of  D to w, the two lists of  posit ions found at w are an LCS 
in the first and second strings, respectively. 

The  complexity of  a decision tree is the length o f  a longest  path in that tree. 
We  define T(n, s) to be the m i n i m u m  complexi ty  over  all decision trees that solve 
the (n, s ) -LCS problem 

A free decision tree is one which makes no comparisons whose outcomes are 
already known (For  example ,  if the symbols  at posit ions p and q and at posit ions q 
and r have been compared  and found equal, then,  by transit ivity,  the symbols  at po- 
sit ions p and r are also known to be equal.) We  can, without  loss of  generali ty,  as- 
sume that all decision trees being considered are free. This assumpt ion allows us to 
consider  decision trees in which there  are no unnecessary  comparisons.  

Example 1. To fix the model  more closely, let us consider  the case where  
n = s  - - 2 .  (That is, we are to find an LCS of  two strings each of  length 2, and 
each over  the same two symbol  alphabet.)  For  convenience  we let A -- a I a 2 and 
B -- b 1 b 2. In Figure 2 we see a decision tree that solves the (2, 2)-LCS problem. It 
has complexi ty  3, which we shall see is the m i n i m u m  for this problem. Thus 
T ( 2 . 2 )  = 3 .  [] 

no 

yes f ~ no y e s f  '~, no  

a2 = b 2 

ao yes no 

FIG 2. Decision tree solving the (2, 2)-LCS problem 

3. Upper Bounds 

There  are two trivial strategies that can be used to construct  decision trees for a 
fixod n and s. The  first strategy is to compare  each symbol  of  one string with each 
symbol  of  the other. It yields the following theorem. 

THEOREM 1. For all s and n, T(n, s) ~ n 2. 
For  s >/ 4n/3 this result  is the best possible under  our model  of  computat ion.  

The  second strategy is to use comparisons to de te rmine  which port ions of  the two 
strings hold identical symbols.  We  cannot,  of  course,  de t e rmine  the actual symbol  at 
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a position with "equal - unequal" comparisons. If we know the partition of the two 
strings into equivalent positions, however, then we can surely select an LCS for the 
string without making any additional "equal-unequal" comparisons. We are thus 
motivated to make the following definitions. 

The (m, s)-string identification problem is, given a string of length m, to deter- 
mine which positions hold the same symbols, assuming all symbols are chosen from 
an s-symbol alphabet A decision tree with "equal-unequal" comparisons for the strmg 
Mentification problem is defined as for the LCS problem, except the leaves are labeled 
with partitions of the integers 1, 2 . . . . .  m into at most s equivalence classes. 

The notions of assignment and validity of an assignment are defined as for the 
LCS problem. A decision tree solves the (m, s)-string identification problem if for 
each leaf w, all valid assignments for the path from the root to w have equal symbols 
at a pair of positions if and only if those positions are in the same block of the parti- 
tion at w. Finally, we can define l(m, s) to be the minimum over all decision trees 
D solving the (m, s)-string identification problem of the length of the longest path 
in D. 

LEMMA 1. T(n, s) ~< l(2n, s). 
PROOF Concatenate the two strings of length n into one string of length 2n, 

identify the equivalent positions, and determine from them an LCS for the two 
strings of length n. Note that no algorithm to solve the LCS problem for general n 
and s is implied by this strategy, but using it we can, for fixed n and s, build a deci- 
sion tree for the (n, s)-LCS problem given a decision tree for the (2n, s)-strmg 
identification problem. [] 

LEMMA 2. l (m,s )  ~< ( s - - l ) ( m - - + )  fora l l l  ~< s ~< m. 

PROOF Visit in turn each position of the given string, comparing the symbol 
at that position with the representatives for each of the equivalence classes found so 
far. If the symbol matches the representative of some class, it is added to that class. 
If no match is found, the symbol becomes the representative of a new class. Hence, 
for 1 ~< 1 ~< s, at most t - 1  comparisons are needed for the t th position. For i > s, 
s - 1  comparisons suffice, since the sth comparison will always succeed if all others 
have failed. The total number of comparisons is thus 

s - 1  
S ]~i + ( m - - s ) ( s - - l )  = (s--1)(m---~-) .  I~ 

From Lemmas 1 and 2 we conclude: 

THEOREM 2. For all s and n, T(n, s) ~< ( s - l ) ( 2 n - - - ~ - ) .  

Note that Theorem 1 is stronger than Theorem 2 when ~ >t 2 - -q~ ~ .586 
n 

and Theorem 2 is stronger otherwise. 

4. Strmg Identification 

Since the string identification problem was used in the proof of Theorem 2 to bound 
from above the complexity of the LCS problem, let us digress a moment and show 
that the upper bound on l(m, s) of Lemma 2 is its exact value. 

To prove this result we relate the string identification problem to graph color- 
ing. Given a path P in a decision tree for the LCS or string identification problem 
we can associate with P an undirected graph Gp as follows. Let R e relate two posi- 
tions if they have been compared and found equal along path P. Let ~p be the 
least equivalence relation containing Rp. That is, p ~ p  q if and only if p = q or the 
fact that p and q have the same symbol is implied by the outcomes along path P 
Then the vertices of the graph Gp are the equivalence classes of ~ p ,  and there is an 
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edge between two vertices if members of  their represented classes have been com- 
pared and found unequal along path P. 

An undirected graph is k-colorable if there is a mapping (a k-coloring) from its 
vertices to a set of  numbers  (colors) such that no two adjacent vertices are mapped 
to the same color. A graph G is umquely k-colorable if all k-colorings of  G are the 
same up to a renaming of  colors. 

Example 2. Figure 3 shows a path P whtch is part of  a hypothetical decision 
tree for the (6,2)-string identification problem. We use a 1, a 2 . . . . .  a 6 for the posi- 
tions of  the string. Rp is given by: 

a I Rp a 2 
a 2 Rp a 3 
a 4 Rp a 5 

~ e  has equivalence classes {at ,a2,a3 }, {a4,as}, and {a6}. 
a 5 ~- a6, the graph Gp is as shown m Figure 4. 

Since a 3 ;~ a 4 and 

yes 

ilO 

n o  

FIG 3. Path P FIG 4. Graph Gp 

We note that all 2-colorings for Gp must color {a 4,a 5 } and the other two ver- 
tices with the other color. Thus the 2-coloring of  Gp is unique up to renaming of  
color's and explains one conclusion at the leaf of  Figure 3 that a 6 has the same value 
as at ,  a2, and a 3 although no equality among them is implied by ~ p .  [] 

We may easily see that the notions of  graph colorings and valid assignments 
for a path are related. It is therefore a restatement o f  definitions to prove: 

LEMMA 3. A decision tree solves the (m, s)-strmg identification problem oC and only 
t f for each path P, Gp ts umquely s-colorable. 
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The following two lemmas are from [2]. 

LEMMA 4. In a k-colormg of  a umquely k-colorable graph, the subgraph mduced by 
the union of any two color classes ts connected. 

LEMMA 5. Every uniquely k-colorable graph with p vertices has at least 

(k -1 ) (p - ~  ) edges. 

PROOF Let C~k be the number  of  vertices of  color t m a unique k-coloring of  

the graph. Then  ~ c ~  ----p. For  each t < j t h e r e  are at least c~ + c / - 1 edges 

connect ing  vertices of  these two colors by Lemma 4. No edge surely connects  two 
vertices of  the same color, so to each edge we may assign a unique pair of  states i 
and j such that the edge is counted  among the c~ + cl --  1 edges connect ing  the 
vertices of  colors t and j.  Thus the number  of  edges is at least ~ c~ + c / - 1. 

J < j  

Now ~ 1 = k ( k  - 1)/2. For  each m the term c m appears exactly k - 1  t imes 
i < j  

among all the expressions c t + c / for t < j. Thus 

k 

~ c, + c I ---- ( k - -1 )  ~ c m = ( k - 1 ) p .  
t < l  m = l  

+ c~ - 1 ---- ( k - - 1 ) p - k ( k - - l ) / 2  = ( k - 1 ) ( p - % ~ - ) .  [] Hence,  Zc, 
t < l  

THEOREM 3. l(m, s) = ( s - - 1 ) ( m - - ~ - ) f o r a / l l  ~< s ~< m. 

PROOF From Lemma 2 we have l(m, s) ~< ( s - I )  ( m - - ~ - ) .  Suppose we have 

a decision tree D for the string identification problem and consider  that path P m D 
for which all outcomes are "no t  equal." The  graph Gp has m vertices and must  be 
uniquely s-colorable by Lemma 3. Thus by Lemma 5 Gp has at least 

( s - 1 )  (m---~-)  edges, so P must  be of  at least that length. We have thus bounded 

from below the complexi ty  of  an arbitrary decision tree D for the string 
S 

identification problem. Hence  l(m, s) >~ ( s - - l )  ( m - y ) .  [] 

5. Lower Bounds for the LCS Problem 

We cannot  show Theorems  1 and 2 to be exact bounds  on T(n, s) ,  principally be- 
cause we do not have an analog of  Lemma 3 relating vahd ass ignments  to s- 
colorings. We can show the lower bound of  Figure 2, and do so with a series of  
lemmas. The general  strategy behind  the proof is to exhibi t  a path P ,  in any deci- 
sion tree such that e i ther  lots of  comparisons between positions of  the two strings 
are made,  or a lot of  comparisons between positions of  the same str ing are made to 
group positions into large equivalence classes under  -~e , .  

A fundamental assignment is an ass ignment  of  values to the posit ions of  strings 
A and B such that there  are at most s/2 different values per string and there are no 
values common  to strings .4 and B. Thus, a fundamenta l  ass ignment  has an LCS of  
length 0. 

A side comparison is a comparison between positions of  the same string. 
A cross comparison is a comparison between positions of  different strings. 
A vahd assignment (for a particular sequence of  comparisons)  is an ass ignment  

of  values to posit ions that is consis tent  with the results of  all comparisons 
We now define an "oracle"  or decision rule by which a path is dis t inguished m 

each decision tree for the LCS problem. 
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Dectsion Rule (*): Return "unequal" whenever there exists a valid fundamen- 
tal assignment consistent with that outcome. Otherwise, return "equal" 

Let us fix on an arbitrary decision tree D for the (n, s)-LCS problem. Let P, 
be the path from the root of D to a leaf such that every comparison has the outcome 

, (t) >, dictated by rule ( ) .  Let P~ , i ~ 0, be the prefix of length i of P , ,  and let C, (') be 
a (not necessarily unique) fundamental assignment presumed valid for P,(') by rule 
(*). 

Define a group of positions (with respect to P,(')) to be an equivalence class 
under .~p,~,>. Note that a group may have size 1, and that all groups are contained 

within one string or the other, since by rule (*), all cross comparisons have outcome 
"unequal." If all members of a group have each been involved in at least s/2 side 
comparisons, call the group a clan. 

Let us call the two strings being compared A and B. Let gA and c A be the 
number of groups and clans, respectively, in A with respect to path P,.  Since every 
clan is a group, gA >/ cA" Let gB and c B be defined analogously for string B. 

It is easy to get a lower bound on the number of cross comparisons in P,. 
LEMMA 6. P, makes at least gA gB cross comparisons. 
PROOF If not, then there are two groups, G 1 in A and G 2 in B, such that none 

of their positions have been compared. We know there is a valid fundamental as- 
signment C, for P, ,  in which the LCS is necessarily of length 0. We can find 
another assignment C valid for P, by changing the value of the G 1 positions in C, 
to be equal to that of the G 2 positions. 

To see that C is valid for P, ,  consider any comparison Pl :P2 on that path. If 
neither Pl nor P2 is in Gi, their values are the same in Cas in C,. Thus the values 
assigned to positions Pl and P2 by C agree with the outcome of comparison Pl :P2 
along P,.  If both Pl and P2 are in G1, then they must have the same value in C,, 
so the outcome of PI'P2 was "equal". Since Pl and P2 were defined to have the 
same value in C, the outcome "equal" for comparison Pl 'P2 is consistent with C. 

If only one of Pl and P2, say Pl, is in G l , then the outcome of Pl :P2 must be 
"unequal," and Pl and P2 have different values in C,. They must have different 
values in C as well, unless P2 is in G 2. But by hypothesis, no member of G l was 
compared with a member of G 2, so we can rule out this possibility. We conclude 
that C is valid for P,.  

Since C has an LCS of length equal to the smaller of G 1 and G 2, which is not 
zero, we conclude that the decision tree D of which P, was a path does not solve 
the LCS problem. [] 

We now develop a lower bound on side comparisons by showing that in order 
for there to be any "equal" side comparisons, there must be many side comparisons 
with outcome "unequal." If there are few "equal" side comparisons, then Lemma 6 
is sufficient to show P, to be long. If there are many "equal" side comparisons, 
then we can use the number of "unequal" side comparisons to bound from below 
the length of P,.  

LEMMA 7. Every group of  size greater than one is a clan (i.e. all its members are 
involved m at least s/2 stde compartsons). 

PROOF Suppose not. Then there must be some side comparison Pl :P2 on P, 
with outcome "equal" along P, ,  such that Pl was previously in a group by itself and 

s 
had been involved in at most -~- -- 2 side comparisons, all of them with outcome 

"unequal." Let comparison Pl :P2 be the i th in P, and consider a fundamental as- 
s 

signment C, ( I - l )  Since Pl has been compared with at most -~- -- 2 other positions 

in its string, there is some value reserved for positions in that string possessed in 
C,(, -1) by none of the positions with which Pl has been compared in P,('). 
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Therefore, we can construct a valid fundamental assignment C from C, (~-1) 
by g~wng Pl that value. By an argument s~mdar to that of Lemma 6, we can argue 
that C is valid for the path consisting of P , ( ' - I )  followed by the "unequal" branch 
after comparison Pl :P2 Thus P, should not follow the "equal" branch at that com- 
parison, as supposed. [] 

LEMMA 8. I f  there are any "equal" stde comparisons in string A along P , ,  then 
there are at least s/2 clans m strmg A, and stmdarly for B. 

PROOF Suppose the t th comparison along P, ,  say Pl :P2, has the outcome 
, ,  ~ ,  . S 

equal. Suppose m contrad~cuon that after this comparison there are at most -~--1 

clans in A. But then we can construct a fundamental assignment C valid for p , t , - t )  
and the "unequal" outcome for Pl :P2 as follows. C assigns to members of string B 
the same values assigned to them under C, ( ' -1) .  After the Pl 'P2 comparison, Pl 

s 
a n d  P2 are together in a clan according to Lemma 7. Consider the other -~---2 clans 

in A after this comparison. To each of these clans we assign a distinct value. This 
leaves free at least two distinct values which we can assign to Pl and P2 before the 
comparison. Nonclans are assigned values dtstmct from that of any position with 
which they have been compared. [] 

LEMMA 9. I f  g A < n. then c A >i s/2, and stmtlarly for B. 
PROOF If gA < n, then there has been a side comparison involving positions 

of A with outcome "equal." The result then follows from Lemma 8. [] 
s s 2 

LEMMA 10. I f  gA < n, then there have been at least (n - gA )'~- + T side 

comparisons along P , ,  and stmtlarly for B. 
PROOF Let h A be the number of positions in A that are not m clans By 

Lemma 7, all such positions are in single groups so h A = g A  --CA Then the 
number of positions in clans is n - h A = n - gh + CA" Each position in a clan is 
involved in at least s/2 side comparisons and each side comparison involves at most 
two members of clans. Thus the number of side comparisons within A in P, is at 

~ s SCA 
least ( ) (  ) (n -- gA + CA) = (n -- gA )-~- + -~--" By Lemma 9, c A >l s/2, so 

the present result follows. [] 
THEOREM 4. 

s s 
T ( n , s )  >~ y ( n  + y ) .  fors~< n, 

T(n, s)  i> 3ns/4. for n ~< s ~< 4n/3, and 

T ( n , s )  >I n 2, for4n/3  ~< s~< 2n. 

PROOF We consider the length of P, ,  obtaining lower bounds in the cases 
when zero, one, or two of gh and gB are less than n. We then cimm that T(n, s) 
must exceed the smallest of these three. The three inequahues m the statement of 
the theorem reflect the analysis regarding which one of these cases yields the smal- 
lest lower bound on the length of P, for varying values of s. 

CaseO. gA = g B  =n"  The length of P, l s a t l eas tn  2 b y L e m m a 6 .  
Case 1. Let gA < n and gB = n. Then there are at least ng A cross compari- 

_ 2  
S 

+ -~- side comparisons by Lemma 10. sons by Lemma6  and at least (n - -gA)-~-  s 2 

The length of P, is at least (n - s gA )'~- + -~- +ngA" Since gA >I CA is obvious, 
s s 2 

we havegA >1s/2 b y L e m m a 9 .  LetgA = s / 2  + t. Then (n -- gA )-~- + "~-+ ngA 

= 3ns/4 + t(n -- @). Since we assume s ~< 2n, 3ns/4 ts a lower bound on the 
o¢ 
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length of  P .  in this case. 
Case 2. gA < h a n d  gn < n. By Lemmas  6 a n d  10, the length of  P ,  is at 

least 

s s 2 
(2n - -gA  -- gB)--~ + 

Since we know gA and gB are at least s/2, we have 

+ gAgB" 

1 1 1 1 1 
gAgB = -~gAgB + --fgAgB >~ "~gA (s/2 ) + -~gB (s/2 ) = "~s(gA + gB )" 

s s 2 ns s 2 s 
. . . .  -~-(n + We see that Thus (2n gA gB )'~" + ~ + gAgB >1 "~- + 4 "2-)" 

s (n + s ) Is a lower bound on the length of  P .  in this case. T T 
We may conclude that P .  is at least as long as the smallest  of  n 2, 3ns/4 and 

T ) 
S 

- (n  -F The theorem then follows by comparing these three funct ions as s 

ranges from 1 to 2n. [] 
It should be noted that  the lower bound  of  Theorem 4 applies even if we only 

wish to find the length of  an LCS. 
If  we compare  two strings of  lengths n I and n 2, respectively,  where n 1 > n 2, 

then we can obtain the following lower bounds  on T(n I , n 2, s), the number  of  com- 
parisons needed to de te rmine  a longest  common  subsequence  (or even its length):  

S 
T(n  I , n 2, s )  >1 -T(n l  + n  2 + s )  for 0 ~< s ~< n 2, 

S 
T(n 1 ,n  2 , s )  >1-~-(2n 2 + n  1) f o r n  2 ~< s<~ - -  

4n 1 n 2 

2n 2 + nl , and 

T(n I , n 2, s) >1 n I n 2 for - -  
4n 1 n 2 

2n 2 + n I 
s ~ n 1 + n 2 . 

For  the special case s = 2, we can obtain exact upper  and lower bounds  on 
the LCS problem 

THEOREM 5. T(n, 2) = 2 n - - l .  
PROOF By Theorem 2 we need only show that T(n, 2)  >i 2 n - 1 .  Given  any 

decision tree for the (n,2)-LCS problem,  consider  the path P along which all cross 
comparisons  have outcome "unequa l"  and all side comparisons have outcome 
"equal ."  Suppose Gp has m vertices. Then  there are exactly 2 n - - m  side comparisons 
in P We can find one ass tgnment  C 1 vahd for P, in which all posit ions in one 
string are given one  value, say 0, and all posit ions in the o ther  have the o ther  value, 
say 1. The  LCS in C 1 is clearly of  length 0. I f  Gp is not connected,  then we could 
reverse the values defined by C 1 in one connected  componen t  to obtain vahd as- 
s ignment  C 2 with LCS of  length greater than 0. Thus Gp is connected,  so there are 
at least m - 1  cross comparisons  in P, for a total o f  2 n - - m  + ( m - - 1 )  = 2n - -1  com- 
parisons. [] 

6 Algorithms That Use Only Cross Comparisons 

Various algori thms such as those of  [7, 15] rely on cross comparisons  only. It turns 
out  that it is easy to get exact bounds  on algori thms of  this type, and the bounds  are 
significantly higher  for many values of  s than for the unrestr ic ted case. 
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THEOREM 6. For s ---- 2, 2 n -  1 cross comparisons and no stde compartsons are 
sufficient to solve the LCS problem, and they are necessary even to determine the length o f  
the LCS i f  side comparisons are forbidden. 

PROOF Necessity follows from Theorem 5. For sufficiency, we use an algo- 
rithm simdar to that of  Lemma 2. Compare the first position of  each string with all 
positions of  the other string, a total of  2 n - 1  comparisons. Then the positions Pl 
and P2 in the same string have the same value if and only if they had the same out- 
come when compared with the first symbol of  the other string. (Note that s = 2 ~s 
essential here.) 

If  Pl and P2 are in different strings, let a 1 and b I be the first positions of  the 
strings containing Pl and P2, respectively. Then positions Pl and P2 hold the same 
value if and only if an odd number  of  the outcomes of  the following three compari- 
sons are "equal":  (1) Pl : bl, (2) P2 :al ,  (3) a 1 :b I. (Again s = 2 is essential) [] 

THEOREM 7. For s >1 3, n 2 cross comparisons are suffictent for the LCS problem 
and necessary even to find the length o f  an LCS i f  side comparisons are prohibited. 

PROOF Sufficiency ~s obwous Consider the path P i n  a decision tree D, which 
makes cross comparisons only, such that all outcomes are "unequal." If  posmons Pl 
in string A and P2 m string B are not compared along P, then we may find two as- 
signments C 1 and C 2 valid for P as follows. C 1 maps all positions in A to 0 and all 
positions in B to 1. It clearly has an empty LCS. C 2 maps all positions in A except 
Pl tO 0 and all positions in B except P2 to 1. Pl and P2 are given value 2. Clearly 
the LCS of  C 2 has length 1, and D does not solve the LCS problem. We conclude 
that all n 2 possible cross comparisons are present m P, so the complexity of  D is at 
least n 2. [] 

7. Conclustons 

We have demonstrated that any algorithm using "equal-unequal" comparisons for 
the LCS problem must, in the worst case, either be quadratic or must  assume a fixed 
alphabet size. Even for a fixed alphabet of  size greater than two, side comparisons 
must play an essential part if the algorithm is to run in less than quadratic time. 
There are, of  course, many opportumties to use techniques that cannot be modeled 
by our decision trees. Indexing into arrays, as in [12], is one; sorting and hashing 
are other ~deas which might be useful in constructing less than quadratic algorithms. 

An obvious next step ~s to investigate the expected time complexity of  the 
LCS problem. The primary difficulty here is defining a meaningful probabihty distri- 
bution on pairs of  input strings. Chvatal and Sankoff [4] have computed bounds on 
the expected length of  a longest common subsequence of  two random sequences of  
the same length. However, m some applications random sequences may not be en- 
countered. For example, m data processing applications where two files are being 
compared ~t is not reasonable to treat the two files as random pairs of  strings. 

The straightforward dynamic programming algorithm for the LCS problem has 
the disadvantage that it takes the same quadratic amount  of  time on all inputs. In 
practice we would prefer an algorithm which is more efficient on typical inputs and 
which may be less efficient on infrequent inputs. For example, Hunt  and 
Szymanski's algorithm [9], which is based on an approach suggested by H. S. Stone, 
has the desirable property that it can be easdy implemented to work in O(n logn)  
time on many inputs which occur in data processing applications, although ~ts worst 
case time complexity is O(n 2 log n). More investigation of  algorithms of  this nature 
seems profitable. 
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