
Average Case Analysis of k-CNF and k-DNF

learning algorithms

Daniel S. Hirschberg Michael J. Pazzani Kamal M. Ali

July 1, 1994

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717, USA

dan@ics.uci.edu pazzani@ics.uci.edu ali@ics.uci.edu

(714) 856-5888

Abstract

We present average case models of algorithms for learning Conjunctive Normal

Form (CNF, i.e., conjunctions of disjunctions) and Disjunctive Normal Form (DNF,

i.e., disjunctions of conjunctions). Our goal is to predict the expected error of the

learning algorithm as a function of the number n of training examples, averaging over

all sequences of n training examples. We show that our average case models accurately

predict the expected error and demonstrate that the analysis can lead to insight into

the behavior of the algorithm and the factors that a�ect the error.

1 Introduction

A goal of research in machine learning is to gain an understanding of the capabilities of

learning algorithms. Pazzani & Sarrett (1990) introduced a framework for average case

1



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 2

analysis of machine learning algorithms. Here, we show how this framework can be applied

to create average case models of an algorithm for learning monotone k-CNF concepts and

an algorithm for learning monotone k-DNF concepts.

1.1 The PAC Framework

The framework presented in this paper attempts to unify the formal mathematical and the

experimental approaches to understanding machine learning algorithms. To achieve this

uni�cation, an average case model is needed to predict the expected error

1

of a learning

algorithm as a function of the number of training examples. In contrast, the probably ap-

proximately correct (PAC) learning model (e.g., Blumer, Ehrenfeucht, Haussler, & Warmuth,

1989; Haussler, 1987; Valiant, 1984) has a di�erent goal. The goal of the PAC model is to de-

termine whether a given algorithm can learn an arbitrary concept from a given concept class,

given a su�cient number of examples. Following the de�nition given in Haussler (1987), an

algorithm A is a polynomial learning algorithm for a class of hypothesis spaces H if for all �

and � such that 0 < �; � < 1 and n; s � 1 there exists a sample size S

A

(�; �; n; s) polynomial

in

1

�

,

1

�

, n and s, such that for all domains X of complexity n, all probability distributions

P on X and all target concepts c 2 H

X

of complexity at most s, given a random sample

2

of

c of size S

A

(�; �; n; s) drawn independently according to P , A produces a hypothesis in H

X

that, with probability at least 1 � �, has error at most �.

Note that the distribution from which the training examples are drawn is not speci�ed.

In particular, the system is deemed able to learn the concept only if it can learn from any

distribution. Furthermore, the PAC model requires that the sample size required to learn a

concept grow polynomially with respect to the following four quantities:

1

�

,

1

�

, a measure of

the complexity of the instance space, and a measure of the complexity of the target concept.

1

The expected or mean error E

A;C;D;n

of an algorithmA learning a concept C after training on n examples

independently drawn according to some distribution D is the expectation of making a classi�cation error on

one (test) example independently drawn from the instance space according to D.

2

Sample refers to a set of training examples and sample size refers to some measure of that set, usually

the cardinality.



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 3

Although the PAC model has been used to predict the accuracy of an algorithm as a function

of the number of training examples (Haussler, 1990), it is primarily used to show that certain

classes of concepts are not learnable and concerns itself with learnability in the limit.

A model related to the PAC model has been proposed to deal more directly with ana-

lyzing the worst case error of learning algorithms (Haussler, Littlestone, & Warmuth, 1990;

Hembold, Sloan, & Warmuth, 1990). This model is designed to predict the probability of a

classi�cation error on the N+1st example after being trained on N training examples.

1.2 A framework for predicting the mean error rate

In this paper we present a framework for analyzing learning algorithms that will yield the

expectation of making a classi�cation error, given the learning algorithm, the target concept,

a distribution on the instance space and the number of training examples.

The goal of the analysis here is to predict the mean error of a given algorithm on a

given problem from a given distribution. The average case analysis

3

can be used to compare

the expected error rate of di�erent algorithms on the same problem. As a consequence,

the average case model can be used to show that one learning algorithm will, on average,

converge to the correct solution more rapidly than another. In addition, it can be used to

prove that the asymptotic accuracy of one algorithm is greater than that of another.

Our framework for average case analysis requires us to determine:

1. The conditions under which the algorithm changes its hypothesis of a concept.

2. How often these conditions occur.

3. How changing a hypothesis a�ects the accuracy of that hypothesis.

These criteria are instantiated for the learning algorithms under consideration in sections

2.1 and 2.2.

3

In our analysis, we average over all training sequences of N examples, not over di�erent target concepts

or distributions.



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 4

1.3 A Comparison of the frameworks

The PAC model and the model used to predict the probability of a classi�cation error on the

N+1st example are worst case, distribution-free models. It may be possible to tighten the

bounds on the error rate by specializing the models for a given distribution. Although there

has been some distribution-speci�c research (e.g., Benedek & Itai, 1987; Kearns, Li, Pitt, &

Valiant, 1987; Natarajan, 1987), it has concentrated on showing that certain concepts are

PAC-learnable from a polynomial number of examples given a known or uniform distribution

of examples, rather than providing tighter bounds on the rate of classi�cation error made by

those algorithms. Blumer et al: (1989), for example, give the following upper bound on the

mean error

V Cdim(h)

N

where h is the hypothesis space, N is the number of training examples, and V Cdim(h) is the

Vapnik-Chervonenkis dimension of that hypothesis space (Vapnik & Chervonenkis, 1971).

Other distribution-speci�c work on bounding the amount of error has been done by Haussler

et al: (1990). Theorem 3.1 in Haussler et al: (1990) yields the following lower bound on the

mean error that can be achieved by any algorithm on the worst case distribution:

max(1; V Cdim(h)� 1)

2eN

given that V Cdim(h) is �nite and N > V Cdim(h).

However, this analysis pertains to the worst case distribution of training examples. One

would expect the mean error rate curve to be lower for other distributions. As Figures

1a and 1b illustrate, a model such as ours, that is able to accept the the concept and the

distribution as parameters, can make mean error predictions that are much closer to the

empirically observed error rate. Theorem 3.1 makes mean error rate predictions assuming

the worst case distribution, so its predictions are further than ours from the empirically

observed average error rate. Furthermore, as Figure 1b shows, the functional form of the

error curve predicted by Theorem 3.1 is qualitatively di�erent from the error curve that

is empirically observed. A common way used to describe how well data �ts a model is to



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 5

use the coe�cient of determination

4

(Winer, 1971). For the curves in Figure 1a, r

2

has a

value of 0.9493 for Theorem 3.1 and a value of 0.9996 for our average case model, indicating

that the average case model �ts the data more closely than does Theorem 3.1. Although this

comparison is limited to a speci�c distribution and concept, we believe our model would make

mean error rate predictions that are closer than that of the PAC model to the empirically

observed values for a wide range of concepts and distributions because it is able to exploit

knowledge of the target concept and distribution.

Figure 1a graphs mean error rate predictions for learning the 2-CNF expression i

1

^ i

2

over the instance space of 5 Boolean features, given that each feature is independent and

takes on the value TRUE with probability 0:5. Note that Theorem 3.1 only applies when

N > V Cdim(h), which is 10 for this example, and that the error rates predicted by Theorem

3.1 do not depend on the concept being learned; they are solely determined by the hypothesis

space and N . In particular, Theorem 3.1 would predict the same error rate curve for any

two concepts in that hypothesis space whereas our model would predict di�erent error rates.

INSERT FIGS 1A AND 1B ABOUT HERE

2 Average Case Learning Models for k-CNF and k-

DNF

A restricted version of conjunctive normal form, k-CNF, provides a more expressive language

of hypotheses than the language of pure conjunctions that we analyzed previously (Pazzani

& Sarrett, 1990). Hypotheses in k-CNF can be expressed as conjunctions of disjunctions,

4

The coe�cient of determination is de�ned as follows (where O is the average value of O

i

):

r

2

=

P

i

(O

i

� P

i

)

2

P

i

(O

i

�O)

2

The use of this coe�cient is not limited to linear regression, it can be also used to describe the goodness of

�t of non-linear models to data.



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 6

where the disjunctions are of length at most k. Similarly, hypotheses in k-DNF can be

expressed as disjunctions of conjunctions of length at most k. For simplicity, we restrict

our attentions to monotone k-CNF and k-DNF (i.e., forms in which no feature is negated).

We will restrict our attention to the algorithms proposed in Valiant (1984) (see Table 1 and

Table 2).

The k-CNF algorithm initializes the hypothesis to the most speci�c k-CNF concept and

gradually makes the hypothesis more general by deleting conjuncts that are not consistent

with positive training examples. For example, if there are 3 features (a, b and c) then the

initial hypothesis for a monotone 3-CNF algorithm is:

a ^ b ^ c ^ (a _ b) ^ (a _ c) ^ (b _ c) ^ (a _ b _ c):

If the �rst positive training example is a ^ b ^ c then the hypothesis will be revised to

a ^ (a _ b) ^ (a _ c) ^ (a _ b _ c):

Similarly, the k-DNF algorithm initializes the hypothesis to the most general k-DNF con-

cept over the given instance language, and gradually makes the hypothesis more speci�c by

deleting conjunctive terms that are consistent with negative training examples.

In the following two sections, we apply our framework to analyzing these algorithms for

learning 2-CNF and 2-DNF concepts from a distribution in which feature values (all features

are Boolean) of the training examples are selected independently. Thus the instance space

is f0; 1g

C

where C is the number of Boolean features. We use our framework to predict

the mean error rate of these algorithms and compare the predictions to empirically derived

average error rates.

2.1 A model for 2-CNF

PUT TABLE 1 AROUND HERE.

We will �rst analyze the algorithm in Table 1 for k = 2, using only positive, indepen-

dently drawn examples. The following notation describes the problem, independent of the



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 7

algorithm.

C

�

The CNF expression for the target concept.

f

j

The j-th feature of an example.

p

j

The probability that the j-th feature has a true value.

m The total number of features used to describe an example.

We will use the following notation to describe the analysis of the algorithm:

D

�

The set of pairs (i; j) that are in the target concept. For 2-CNF, (i; j) would be in

D

�

if the disjunction f

i

_ f

j

was a conjunct of the target concept.

D

n

The set of pairs f(i; j)ji < jg representing the hypothesis after n positive training

examples. Note that D

0

� . . .D

n

� D

�

. See Table 1 for initialization of D

0

.

I

n

The subset of pairs from D

0

that are in the learned hypothesis after n examples but

are not in the target concept.

C

n

The evolving hypothesis (which becomes increasingly general for the CNF algorithm).

S The set of all positive examples.

Finally, we introduce notation that is speci�c to the 2-CNF algorithm learning D

�

.

P The probability that a randomly drawn example is a member of S. Let fi

1

^ i

2

g denote

the set of examples for which i

1

^ i

2

is true. (This notation generalizes to any number

of negated and unnegated subscripts.) Then P = Pr[X 2 f(i

1

_ j

1

) ^ . . . ^ (i

h

_ j

h

)g]

where (i

1

_ j

1

) ^ � � � ^ (i

h

_ j

h

) is the target concept.

P

i;:::;j

The probability that the features f

i

through f

j

are true for the exampleX, given that

X is a member of S. We need this term to calculate the probability that the learned

hypothesis will make an error on a single positive test example. Note that some of the

indices may be negated.

P

i;:::j

= Pr[X 2 fi ^ . . . ^ jg j X 2 S]



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 8

r

d

1

���d

h

(n) The probability that each of the extraneous conjuncts d

1

:::d

h

have been true for

n positive examples. We need this term to determine the probability of getting to some

incorrect approximation to the target concept.

r

d

1

���d

h

(1) = Pr[X 2 f(i

1

_ j

1

) ^ � � � ^ (i

h

_ j

h

)g j X 2 S]

where r

d

1

���d

h

(n) is the n-th power of r

d

1

���d

h

(1) because the examples are

independently drawn with replacement.

Note that misclassifying a positive example is the only form of error made by this 2-CNF

algorithm. The learned hypothesis misclassi�es a positive test example if there is at least

one pair (i; j) in I

n

such that f

i

and f

j

are both false in the test example. We will use the

notation e

n

to represent the probability that a test example is misclassi�ed after n training

examples. So e

n

represents the mean error after learning on n examples, and it is the overall

quantity that our average case analysis aims to estimate. Note that e

n

is summing across all

possible incorrect learned hypotheses. One way to calculate e

n

is to use inclusion-exclusion:

e

n

= e

n

(1)� e

n

(2) + e

n

(3)� e

n

(4):::e

n

(jD

0

j � jD

�

j)

where jD

0

j � jD

�

j is an upper bound on the number of possible erroneous disjunctive terms

that could survive after n examples and e

n

(a) is calculated by the following:

e

n

(a) =

X

d

1

::d

a

=(i

1

;j

1

)::(i

a

;j

a

)2partitions(I

0

;a)

r

d

1

���d

h

(n)P

i

1

j

1

���i

a

j

a

where partitions(I; a) is the set of all subsets of I with length a. e

n

(1) calculates the

probability of getting an error from some learned hypothesis containing exactly one erroneous

disjunction. r

d

(n) is the probability that a learned hypothesis containing the disjunction d

survives n examples and P

ij

is the probability that the learned hypothesis containing f

i

_ f

j

makes an error. Thus e

n

(1) calculates the probability that each pair from I

0

is a pair of I

n

weighted by the probability that a randomly drawn training example would be misclassi�ed

by the disjunction corresponding to that pair. For larger values of i, e

n

(i) corrects e

n

(i� 1)



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 9

by taking into consideration the possibility when more than i� 1 of the pairs in I

n

result in

a misclassi�cation.

An optimization simpli�es the calculation of e

n

. For many subscript combinations,

P

i

1

j

1

���i

a

j

a

is 0. This occurs if there is a pair (i

k

; j

k

) in D

�

and i

k

and j

k

are both in the

set of subscripts of P

i

1

j

1

���i

a

j

a

. Furthermore, if P

i

1

j

1

���i

a�1

j

a�1

is 0, then for all i

a

and j

a

,

P

i

1

j

1

���i

a

j

a

is 0.

2.2 An Average Case Model for 2-DNF

PUT TABLE 2 AROUND HERE

Our model for the 2-DNF algorithm shown in Table 2 follows straightforwardly from the

2-CNF model. As is true for CNF, D

0

� . . .D

n

� D

�

, but now the evolving hypothesis is

becoming increasingly speci�c. Note that only negative examples are needed for learning

and that the only kinds of errors possible are errors of commission.

We revise the notation of section 2.1 with D

�

being reinterpreted to mean the set of pairs

(i; j) such that the conjunction f

i

^ f

j

is a disjunct of the target concept:

P The target concept C

�

is now in DNF form but we want Pr[X 2 S] which can be

calculated by inverting C

�

into non-monotone CNF form and then calculating the

probability using the techniques in section 2.1.

P

i;::;j

This is now the conditional probability that the i-th feature (and so on) are true given

that the example X is not a member of S. The de�nition of P

i;::;j

for k-DNF is

Pr[X 2 fi::gjS] =

Pr[X 2 fi::g ^ S]

P

r

d

1

���d

h

(n) The probability that each of the extraneous disjuncts d

i

were false for n negative

examples. This is the n-th power of r

d

1

���d

h

(1) which (for DNF) is

r

d

1

���d

h

(1) = Pr[i

1

j

1

. . . i

h

j

h

j S]



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 10

Once again, inclusion-exclusion is used to calculate the mean error for the 2-DNF algo-

rithm. The only di�erence is that now an error is made when an extraneous disjunct is true,

so the indices to P are unnegated:

e

n

(a) =

X

d

1

::d

a

=(i

1

;j

1

)::(i

a

;j

a

)2partitions(I

0

;a)

r

d

1

���d

h

(n)P

i

1

j

1

::i

a

j

a

2.3 Extending the models to k-CNF and k-DNF

The generalization to k-CNF and k-DNF is made by allowing D

�

to contain k-tuples. D

0

is

initialized to all subsets of size at most k over the m features. The techniques for calculating

P , r(n) and e(n) remain the same. In addition, as in Pazzani and Sarrett(1990), the model

can be extended to handle negative training examples (in the k-CNF case) and positive

training examples (in the k-DNF case). These were omitted from the initial analysis since

the learning algorithms ignore these examples. The binomial distribution is used to calculate

the probability of getting exactly p positive and n negative examples from a total set of T

training examples. Hirschberg and Pazzani (1992) extend the k-CNF model to deal with

noise in the training data.

3 Implications of the Average Case Model learning

for k-CNF and k-DNF concepts

In this section, we show how the average case models can be used to gain an understanding

of some factors that a�ect the classi�cation error of the learning algorithm. If the value of

k is larger than necessary (learning a 2-CNF concept with a 5-CNF algorithm, for example)

the mean error rate curve decreases more gradually (as N increases) for k = 5 than it does

for k = 2. The 5-CNF algorithm searches a larger hypothesis space and one would expect it

to be less accurate than a 2-CNF algorithm given the same concept and instance space.

INSERT FIGURE 2 AROUND HERE



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 11

Here, we address how the error is increased if an additional, irrelevant feature is added

to the representation of the training examples. We consider a relatively simple problem.

Consider trying to learn the concept, i

1

^ i

2

with a 2-CNF learning algorithm. If 3 features

(i

1

; i

2

; i

3

) are used to represent the examples, then the 2-CNF algorithm will eventually

converge on the following hypothesis: i

1

^ i

2

^ (i

1

_ i

2

) ^ (i

1

_ i

3

) ^ (i

2

_ i

3

) which is truth-

equivalent to the target concept i

1

^ i

2

. The set I

0

will contain the singleton f (i

3

) g.

With 0 training examples, the initial hypothesis will produce an error on (1 � p

3

) of the

positive examples (since an error is made when i

3

is false and i

3

is false in the fraction

1 � p

3

of the positive training examples). After n training examples, the expected fraction

of independently drawn positive examples on which the hypothesis will make an error will

be (p

3

)

n

(1 � p

3

) (since the probability that i

3

has been true for n positive examples even

when i

3

is not a part of the target concept is (p

3

)

n

). The lower curve in Figure 2 graphs the

observed and expected error under these conditions (with p

i

= 0:5 for all i.)

If there are 4 features in the input representation, and the concept to be learned is still

i

1

^i

2

then the 2-CNF algorithm will converge on the hypothesis i

1

^i

2

^(i

1

_i

2

)^(i

1

_i

3

)^(i

1

_

i

4

)^ (i

2

_ i

3

)^ (i

2

_ i

4

) which is truth-equivalent to the target concept. The set of terms from

D

0

(when the instances are represented by 4 features) that can cause errors is fi

3

; i

4

; i

3

_ i

4

g.

The initial hypothesis will produce an error on (1� p

3

p

4

) of the positive examples (since an

error is made when i

3

is false or when i

4

is false). After n training examples, the expected

fraction of independently drawn positive examples on which the hypothesis will make an

error will be (p

3

)

n

(1 � p

3

) + (p

4

)

n

(1 � p

4

) + (p

3

p

4

)

n

(1 � p

3

p

4

). Comparing this expression

to that for one irrelevant feature, (p

3

)

n

(1 � p

3

), one can see that the expected error for any

n will increase as the number of irrelevant features increases. Note that the analysis for

this concept is equivalent to the analysis of the \always true" concept (i.e., D

�

=fg) over

the instance space of fi

3

; i

4

g, ignoring the two features i

1

and i

2

. This holds because both

features i

1

and i

2

must appear in every positive example even when the examples are drawn

from a space of 4 Boolean features. Figure 2 graphs the e�ect of varying the number of

features in the input representation from 4 to 7 on the observed and expected error (all with



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 12

p

i

= 0:5). Figure 3 illustrates a similar e�ect for the 2-DNF algorithm learning i

1

_ i

2

.

INSERT FIGURE 3 AROUND HERE

4 Conclusions

Previous research has used knowledge of distributions to show certain classes of concepts

are learnable in the limit using a polynomial number of examples. The research that has

concentrated on predicting mean error estimates has done so using a worst case distribution.

We present a model that uses knowledge of a speci�able distribution to predict the mean

error rates of a k-CNF algorithm and a k-DNF algorithm. We have illustrated how knowledge

of the distribution allows error rate estimates that come closer to the empirically measured

values than the error estimates made using a worst case assumption. The model also predicts

that the average error will increase as irrelevant features are added to the instance space.

This is true for both k-CNF and k-DNF concepts. Empirical measurements also bear this

out and were used to validate the model. The model is able to make better error estimates

because it exploits knowledge of the distribution and applies to a speci�c, although commonly

used algorithm.

AcknowledgementsWe would like to thank Dennis Kibler for helpful comments on this

work and Caroline Ehrlich for reviewing an earlier draft of this manuscript. This research

is supported by a National Science Foundation Grant IRI-8908260 and by the University of

California, Irvine through an allocation of computer time.

References

Benedek, G., and Itai, A. 1987. Learnability by �xed distributions. In Proceedings of

the 1988 Workshop on Computational Learning Theory (pp 81-90). Boston, MA: Morgan

Kaufmann.



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 13

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. 1989. Learnability

and the Vapnik- Chervonenkis dimension. Journal of the Association of Computing

Machinery, 36, 929-965.

Haussler, D. 1987. Applying Valiant's Learning Framework to AI Concept Learning

Problems. Technical Report UCSC-CRL-87-11, University of California, Santa Cruz.

Haussler, D. 1987. Bias, version spaces and Valiant's learning framework. In Proceedings

of the Fourth International Workshop on Machine Learning (pp. 324-335). Irvine, CA:

Morgan Kaufmann.

Haussler, D. 1990. Probably Approximately Correct Learning. In Proceedings of the

Fourth International Workshop on Machine Learning, (pp. 1101-1108) Boston: AAAI

Press.

Haussler, D. 1986. Quantifying inductive bias in concept learning. Technical Report

UCSC-CRL-86-25, University of California, Santa Cruz.

Haussler, D., Littlestone, N. and Warmuth, M. 1990. Predicting 0,1-functions on

randomly drawn points. Technical Reports USCS-CRL-90-54, University of California,

Santa Cruz.

Hembold, D., Sloan, R., and Warmuth, M. 1990. Learning nested di�erences of

intersection-closed concept classes, Machine Learning, 5, 165-196.

Hirschberg D., Pazzani M. 1992. Average Case Analysis of Learning k-CNF concepts.

In Proceedings of the Ninth International Workshop on Machine Learning, (pp. 206-211)

Aberdeen, UK: Morgan Kaufmann.

Kearns, M., Li, M., Pitt, L., and Valiant, L. 1987. On the learnability of Boolean

formula. In Proceedings of the Nineteenth Annual ACM Symposium on the Theory of

Computing (pp. 285-295). New York City: NY: ACM Press.

Natarajan, B. 1987. On learning Boolean formula. In Proceedings of the Nineteenth

Annual ACM Symposium on the Theory of Computing (pp. 295-304). New York: ACM

Press.



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 14

Pazzani, M., and Sarrett, W. 1990. Average case analysis of conjunctive learning

algorithms. In Proceedings of the Seventh International Workshop on Machine Learning,

Austin, TX: Morgan Kaufmann.

Valiant, L. 1984. A theory of the learnable. Communications of the Association of

Computing Machinery, 27, 1134-1142.

Valiant, L. 1985. Learning disjunctions of conjunctions. In Proceedings of the Ninth

International Joint Conference on Arti�cial Intelligence (pp 560-566). Los Angeles, CA:

Morgan Kaufmann.

Vapnik, V. and Chervonenkis, A. 1971. On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability with Applications, 16,

264-280.



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 15

1. Initialize the hypothesis to the conjunction of all disjunctions of

length at most k of the features that describe training examples.

2. If the new example is a positive example, and the hypothesis

misclassifies the new example, then remove all disjunctions from the

hypothesis that are false in the example.

TABLE 1



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 16

1. Initialize the hypothesis to the disjunction of all conjunctions of

length at most k of the features that describe training examples.

2. If the new example is a negative example, and the hypothesis

misclassifies the new example, then remove all conjunctions from the

hypothesis that are true in the example.

TABLE 2



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 17

CAPTIONS, page 1

Table 1. The k-CNF learning algorithm.

Table 2. The k-DNF learning algorithm.

Figures 1a and 1b. Comparison of mean error predictions from Haussler's

Theorem 3.1 to our average case model for the concept i

1

^ i

2

. The instance

space consisted of �ve Boolean features. Figure 1b plots the log of the error to

illustrate that the functional form of the error curve as predicted by Theorem

3.1 is di�erent from the functional form observed from empirical testing.

Figure 2. Expected and observed error when learning i

1

^ i

2

with a 2-CNF

algorithm when there are a total of 3 (lowest curve) 4, (next to lowest), 5 (mid-

dle), 6 (next to upper) and 7 features (upper curve). The curves represent mean

error rate values as predicted by our average case model. The circles represent

the sample average error rate as determined by empirical tests. The bars are

95 percent con�dence intervals around the empirically determined average error

values. To avoid clutter, con�dence intervals are not shown for the 4 feature and

6 feature cases.



Petsche T. et al. Computational Learning Theory and Natural Learning Systems, Vol. 2. 18

CAPTIONS, page 2

Figure 3. Expected and observed error when learning i

1

_ i

2

with a 2-DNF

algorithm when there are a total of 3 (lowest curve), 4 (middle), and 6 features

(upper curve). The curves represent mean error rates as predicted by our average

case model. The circles represent sample average error rates as determined

by empirical tests and the bars are 95 percent con�dence intervals around the

empirically determined error values. To avoid clutter, some con�dence intervals

are not shown.


